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Abstract

We study the existence of maximizers for a one-parameter family of Strichartz inequalities on
the torus. In general, maximizing sequences can fail to be precompact in LQ(']I‘), and maximizers
can fail to exist. We provide a sufficient condition for precompactness of maximizing sequences
(after translation in Fourier space), and verify the existence of maximizers for a range of values
of the parameter. Maximizers for the Strichartz inequalities correspond to stable, periodic (in
space and time) solutions of a model equation for optical pulses in a dispersion-managed fiber.

1 Introduction

In 1977, in the course of solving a problem on the restrictions of the Fourier transforms of functions
on R™ to quadratic surfaces in R™, Strichartz [44] obtained an estimate on solutions of the linear
Schrodinger equation v; — iAzv = 0 on R™, taking the form of an inequality

||U(.”L', t) ||Lq(]Rn+l) < CH’U(.’E, 0)||L2(Rn), (1.1)

in which ¢ = 2(n + 2)/n, and the constant C' is independent of v. Inequalities such as (1.1) had
appeared previously in the literature: for example, [44] references the work of Segal [38], in which
an analogous estimate is obtained for the Klein-Gordon equation in R'; and the periodic version of
(1.1) that appears below in (1.2) was already proved by Zygmund in [50]. However, perhaps because
Strichartz gave a unified treatment of a family of such estimates, today any inequality which provides
a bound on a space-time norm of the solution of a linear dispersive equation is generally termed a
Strichartz inequality. For an overview of Strichartz inequalities and their use in the study of partial
differential equations, the reader may consult [46] and the references therein.

In this paper we consider a one-parameter family of Strichartz inequalities on the one-dimensional
torus T = R/(27Z). The inequalities in question state that for each B > 0 there exists a constant
C > 0 such that for all u € L*(T),

(/OB /T Tou(2)[* da dt) " <c (/T fu(z) 2 dx>1/2. (1.2)

Here T; denotes the unitary semigroup defined on L?(T) by the linear Schrodinger equation. That
is, for each function u € L2([0,27]), Tyu(z) is defined to equal v(z,t), where v is the solution of
the linear Schrodinger equation vy — (v, = 0 on [0,27] with periodic boundary conditions and
with initial condition v(z,0) = u(x). As mentioned above, (1.2) was proved by Zygmund in [50]
for B = 2m; the result for general B follows immediately from the result for B = 27 via Hoélder’s
inequality and the fact that T} is periodic in ¢ with period 27. One can also find Zygmund’s original
argument reproduced within the proof of Lemma 3.3 below.
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As a general rule, Strichartz inequalities are more elusive in the periodic setting than on the line,
due to the fact that in the periodic setting dispersion does not induce decay. Thus, for example,
while taking n = 1 in (1.1) yields the inequality ||v(x,t)|/z6®2) < Cllv(x,0)| L2 for solutions of
the linear Schrodinger equation on the line, the inequality ||v(z,t)| zs(r2y < C|lv(z,0)||2(ry does
not hold for solutions of the linear Schrodinger equation on the torus, for any constant C' which is
independent of v. On the other hand, a result of Bourgain [6], with important implications for the
well-posedness theory of the periodic nonlinear Schrodinger equation, is that one can replace C in the
latter inequality by C'R¢, where € > 0 is arbitrary and C' is independent of v, if one assumes that the
Fourier transform of ¢(k, 0) of v(x,0) is supported in the ball {k € Z : |k| < R}. Bourgain’s work has
spawned an extensive and rapidly developing theory of Strichartz inequalities on multidimensional
tori (see, for example, [36] for a recent survey of some of its aspects). In this paper, however, we
confine our attention to the estimate (1.2) on T*.

Specifically, we are interested here in the question of whether there exists a function u € L?(R)
for which the best constant in inequality (1.2) is attained. For given B > 0, define

Cp = inf{C > 0: inequality (1.2) holds for all u € L*(T)}. (1.3)

If u € L*(T) is such that equality holds in (1.2) with C = Cp; that is,

([ [ aea) " =ea( frocre )" 0

then we say that u is a mazimizer for (1.2). This terminology arises from the fact that « maximizes
the quantity on the left side of (1.4), subject to the restriction that the L? norm of u be held
constant. By a mazimizing sequence for (1.2), we mean a sequence of functions {u;} in L?(T) such
that for some A > 0, [i|u;|* dz = X for all j € N, while

B 1/4
lim (/ / | Tyu;(2)[* de dt) = CpA/2. (1.5)
]4)00 0 T

Depending on the value of B, it is quite possible that maximizers for (1.2) do not exist: in fact, it
is not hard to see (cf. Corollary 5.3 below) that if B is of the form B = N7 with N € N, then there
are no maximizers for (1.2) in L?(T). On the other hand, if any maximizing sequence happens to
converge strongly in L?(T), then its limit must necessarily be a maximizer, since the left-hand side
of (1.5) is a continuous functional on L?(T).

In general, maximizing sequences do not converge: if there exists more than one maximizer for
(1.2), then a maximizing sequence could simply alternate between two maximizers. One might
ask whether maximizing sequences are precompact, meaning that each of their subsequences has a
strongly convergent subsubsequence. This turns out to be false in general, because of the invariance
of the left side of (1.2) under the operation of replacing u(z) by e**u(z), for arbitrary 6 € R,
corresponding to a translation of w in Fourier space. Thus if u(x) is any maximizer, then the
sequence {eijxu(x)}jeN is a maximizing sequence, and is not precompact.

However, it is not too much to ask that general maximizing sequences be precompact up to trans-
lations in Fourier space. Here, we prove as our main result (Theorem 2.1 below) that the inequality
Cp > B/ is a necessary and sufficient condition for the precompactness, up to translations in
Fourier space, of every maximizing sequence for (1.2). As a consequence we obtain a condition for
the existence of maximizers which is almost necessary and sufficient (see Corollary 5.1 below), and
which we use to obtain that maximizers for (1.2) do exist at least for B in the range 0 < B < By,
where By &~ 2.60. It remains open whether there is some B in (0, 7) for which maximizers do not
exist.

The existence of maximizers for an analogue of (1.2) on the line,

(/01 /R |Syu(z)[* dx dt> : <C (/R u(z)|? dz>1/2, (1.6)
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where S; denotes the solution operator for the linear Schrédinger equation on L?(R), has been proved
by Kunze in [32]. In fact, Kunze has also in [31] proved the existence of maximizers for Strichartz’
original inequality (1.1) in the case n = 1, and that existence of maximizers for (1.1) for general n is
proved in [39]. Moreover, it has even been proved in [16] and independently in [28] that at least for
n =1 and n = 2, maximizers for (1.1) are necessarily Gaussians (for other interesting treatments of
this result, see [5, 7, 29]).

As explained in [32], an important mathematical feature of the problem of finding maximizers for
(1.6) is that maximizing sequences are not, in general, precompact; with the loss of compactness
due not just to the invariance of the left side of (1.6) with respect to translations in physical space,
but also to its invariance with respect to translations in Fourier space. This necessitated in [32]
an elaboration on the method of concentration compactness as used, for example, in Cazenave and
Lions’ original paper [11]: the classical method of [11] fails to apply directly to maximizing sequences
of (1.6), because even when they are tight in physical space, such sequences can still fail to be tight
in Fourier space. In fact, in [32], Kunze succeeds not only in proving the existence of maximizers for
(1.6), but also in characterizing the way in which maximizing sequences can lose compactness. By
virtue of the results of [32] one sees that a sequence of functions {u;} is a maximizing sequence for
(1.6) if and only if every subsequence {u;,, } has a subsubsequence {u;, } such that, for some sequences
{6k} and {z}}, the sequence {e?%u;, (x — )} converges in L?(R) to a maximizing function.

In the periodic case, there is a similar difficulty due to loss of compactness of maximizing sequences
{u;} for (1.2). We show below (see Theorem 2.1) that if Cp > B/7, then every maximizing sequence
{u;} for (1.2) must have a subsequence {u;, } such that {e?*“u;, (z)} converges strongly in L*(T),
for suitably chosen {6)}. Our proof follows the framework of that given for the nonperiodic case in
[32]: first, concentration-compactness arguments are used to show that maximizing sequences must
have subsequences which, after translation, are simultaneously tight in physical space and in Fourier
space, after which a decomposition of the translated subsequence into high- and low-frequency parts
is used to deduce strong convergence in L?(R). However, the application of this technique to the
problem on the torus runs into a difficulty which is not encountered for the problem on the line: in
the periodic case, for certain values of B (including B = 27) maximizing sequences can vanish or
exhibit splitting in Fourier space, while this cannot happen for maximizing sequences on the line.
That the difficulty is essential, and not just an artifact of the method of proof, is shown by the fact
that, as mentioned above, maximizers do not exist in the periodic case for certain values of B. This
seems to be an instance of the general principle that the effects of dispersion in wave propagation
are more subtle and delicate in the periodic case than on the line.

We note that although the approach used in [32] to rule out possible loss of compactness in
maximizing sequences is sufficient for our purposes, alternative approaches are available, such as
those used in [15, 19, 20, 26], which may lead to a shorter proof of our main result.

The validity of the condition Cg > B/ can be verified by finding an appropriate test function: it
suffices to find w € L?(T) such that the ratio of || Tyw(x)|| La(rx[o,5]) to [|wl|L2(T) is greater than B/m.
Below we obtain existence results by finding suitable test functions which satisfy this condition, in
the more convenient form given in Corollary 5.1.

Besides the work mentioned above on maximizers for (1.1) and (1.6), there has been intensive study
recently on extremizers for other Strichartz inequalities, often motivated by the relation between
Strichartz inequalities and Fourier restriction inequalities. As noted in Strichartz’ original paper
[44], the classical inequality (1.1) is equivalent to the statement that

[Frs1(fo)llpaen+ry < Cllfllz(m,0 (L.7)

for all f € L?(M), where ¢ = 2(n + 2)/n, M is the paraboloid in R"*! given by M = {(t,z) : t =
|z|?, 2 € R"}, o is the pullback to M via the projection (¢,z) — x of Lebesgue measure on R™, and
Frn+1 is the (n + 1)-dimensional Fourier transform. By duality, the “Fourier extension inequality”
(1.7) is in turn equivalent to the Fourier restriction inequality

| Fns1fllLeime) < CllfllLe@ntry, (1.8)

valid for f € LP(R™"") with p = 2(n + 2)/(n + 4), the conjugate exponent to g. Hence the results



referenced above on maximizers of (1.1) can also be viewed as results on the maximizers of (1.7) or
(1.8).

The problem of obtaining inequalities such as (1.7) and (1.8) for other submanifolds M of R™*1,
and in other function spaces on R"™! or on M, has long been a mainstream topic in harmonic
analysis; see for example the survey in [45]. More recently, much attention has been paid to the
study of extremizers: for a recent review of some of this work, including an account of its relation to
other topics in analysis, see [18]. We mention here, by way of illustration, some results for the case
when M is S™, the unit sphere in R"*! and o is surface measure on S™. In this case, inequality (1.7)
is equivalent to the classical Stein-Tomas inequality [42, 47], valid for ¢ > ¢, = 2(n+2)/(n+4). The
existence of maximizing functions was proved for ¢ > ¢,, for all n € N, in [15]. In the much more
difficult endpoint case, ¢ = g, existence of maximizers and precompactness of maxiizing sequences
up to symmetries was proved in [13] for n = 2, and in [40] and [19] for the case n = 1. The question of
existence of maximizers is still open for n > 3, but Frank, Lieb, and Sabin in [19] give an interesting
necessary and sufficient condition for existence of maximizers and precompactness of maximizing
sequences up to modulations: i.e., up to multiplication of functions f(w) on S™ by functions of
the form e**“, where z € R**!. Their condition takes the form of an inequality relating the best
constant in the Stein-Tomas inequality (1.7) to the best constant in the Strichartz inequality (1.1).
In [19] it is conjectured that the condition is actually satisfied for every n € N, and it is shown that
this conjecture follows from another conjecture (made by Foschi in [16] and proved there for n = 2
and n = 3), stating that maximizers for (1.1) on R™ are given by certain Gaussians.

Concerning the uniqueness of maximizers for (1.7) when M = S™, Foschi in [17] has proved that
when ¢ = 4 and n = 2, all maximizers are given, up to modulation, by constant functions; thus
settling a question raised by Christ and Shao in [13]. Similar uniqueness results are obtained in [8]
for n € {3,4,5,6} when ¢ = 4, and in [37] for n € {2,3,4,5,6} when ¢ is an even integer and g > 6.

As just three examples of the many other recent papers dealing with other choices of M, we
mention the work of Stovall [43], Carneiro et al. [9], and Frank and Sabin [20], for the cases in which
M is a paraboloid, a hyperboloid, and a cubic curve, respectively.

The periodic Strichartz inequality (1.2) may also be interpreted as a Fourier restriction inequality.
Let T? = [0,27] x [0,27], and let F;, denote the joint Fourier transform in the variables (¢,z) on
T?, defined below in (2.1). A duality argument shows that the assertion that (1.2) holds for all
u € L*(T), with best constant Cp defined in (1.3), is equivalent to the assertion that

1/2
2
(Z | 7 2gl—n2,n]| ) < D|g|l passeey

nez

holds for all g € L?(T?) such that g(¢,z) = 0 whenever B < t < 2, with best constant Dp given
by Dp = (27)3/2Cp. In other words, (1.2) amounts to an inequality on restrictions of Fourier
transforms on T? to a certain parabolic subset A/ of the lattice Z x Z. Because of the discrete
structure of N, the recent literature on extremizers of Fourier restriction inequalities on R", in
which the key issue to be dealt with is the subtle way in which the geometry of M is related to
possible loss of compactness of maximizing sequences, does not seem to be directly relevant to the
problem considered here. However, certain interesting analogies may still be made. For example,
the condition for existence of extremizers given in [19] plays a similar role there to the role played
here by the condition Cg > B/m; in that both conditions rule out certain ways in which maximizing
sequences can lose compactness. (See the introduction of [19] for a discussion of the role of such
“energy” inequalities in other problems in the calculus of variations.)

An additional motivation for studying maximizers of Strichartz inequalities is that they often
represent important solutions of partial differential equations arising in mathematical physics. In
the case of inequality (1.2), maximizers correspond to ground-state solutions of a equation, some-
times known as the dispersion-managed nonlinear Schrédinger equation (DMNLS), which models
nonlinear, long-wavelength light pulses in a dispersion-managed optical fiber. In the non-periodic
case, where pulses are defined on the entire real line and decay as |z| — oo (note that z is ac-
tually a time variable in this model), the DMNLS equation was derived in [21] (see also [2]), and
the existence of ground-state solutions was proved by variational methods in [49] for the case of



positive average dispersion, and in [32] for the case of zero average dispersion. For more results on
the existence and properties of ground-state solutions of the DMNLS and related equations on the
line, see [12, 14, 23, 24, 25, 26, 27, 33, 41].

The maximizers whose existence is proved in the present paper, by contrast, correspond to solu-
tions of an equation which models pulses in a dispersion-managed fiber which are periodic in both
2 and t. This periodic DMNLS equation was derived in [3], where well-posedness results for the
initial-value problem are proved for the case of positive and zero average dispersion, and results on
the existence and stability of periodic ground-state solutions were proved in both cases.

In the case of zero average dispersion, the periodic DMNLS equation, for complex-valued functions
u(x,t) which are periodic with period L in the z variable, can be written in Hamiltonian form as

u = —iVH (). (1.9)

Here the Hamiltonian functional Hy, : L?(T) — R is given by

) L 1
H(u) = _%/0 /0 (Thu(z)|* dt da,

and VH, denotes the gradient of Hy,, given by

L 1
VH, (u) :—8% /O /0 L, (1T u(@) P u(x)) dt da.

The operator TtL appearing in the integrand is the solution operator for the linear Schrodinger
equation with periodic boundary conditions on 0 < z < L. That is, T (u)(z) = v(x,t), where
v(z,t) is periodic with period L in x and satisfies the equation iv; 4+ v, = 0, with initial condition
v(x,0) = u(x). (The gradient here is defined with respect to the real-valued inner product (u,v)
defined on L*(T) by

(u,v) =R [ u(x)v(z) da.
T

That is, we have

for all v € L*(T).)

As an immediate consequence of our results on existence of maximizers for (1.2), we obtain results
on the existence and stability of sets of ground-state solutions to the periodic DMNLS equation (1.9),
for a range of values of the period L. Ground-state solutions can be characterized as solutions of
the form u(z,t) = e“!¢(x), where w € R and the profile function ¢(z) minimizes Hp,(u) among all
functions in L?(0, L) with fixed L? norm . For each fixed value of A > 0, the stability of the set
St of corresponding ground-state profile functions follows from a standard argument, once we have
shown that every minimizing sequence for the associated variational problem converges strongly to
Sr.a in L? norm.

The organization of the remainder of this paper is as follows. In Section 2, we establish notation
and state our main results. Section 3 contains some preliminary lemmas. The proof of Theorem 2.1,
on the sufficiency of the condition Cp > B/ for the existence of maximizers, is given in Section
4. This sufficient condition is verified for a range of values of B in Section 5. The final Section 6
discusses the implications for existence and stability of non-empty sets of ground-state solutions of
the periodic DMNLS equation (1.9).

2 Notation and Main Results

If E is a measurable subset of R and 1 < p < oo, we define L?(E) to be the space of Lebesgue

measurable complex-valued functions u on E such that |u|pr(g) = (fE |ul|P dx)l/p is finite. We
denote by L?(T) the space of Lebesgue measurable, square-integrable, 27-periodic functions on R.



We can identify L?(T) with L?([0,2n]). We will often denote the norm of u in L?(T) simply by
lul|>. For B > 0, we define L} ([0, B] x T) to be the space of all functions f(t,x) defined for
/p
(t,x) € [0, B] x T such that the norm ||f||Lp ([0, B]xT) (fo Jp 1 f (@t )P d dt) is finite.
For 1 < p < oo, we define ¢P(Z) to be the space of sequences of complex numbers {a(n)},ez such

that [|aller = (3,7 la(n)|P) "/P is finite. We define £>° (Z) to be the space of all sequences {a(n)}nez
such that ||a|[ge = sup,,cz |a(n)| is finite.
For u € L?(T), we define the Fourier transform of u to be the sequence Fu in 1?(Z) given by

1

Fuln] = o

e~ MTy(z) da

for n € Z. We also denote Fu[n] by f(n). The inversion formula for the Fourier transform is given
by

neEZ

The correspondence u — @ defines a one-to-one map from L?(T) onto £?(Z); and with this definition
of the Fourier transform, Parseval’s theorem asserts that for any u,v € L?(T), one has

/T(a ) da =27 Y ii(n)d(n

nez

and in particular

ulle = v2rille.

Also, the Fourier transform of the product wv is given by a convolution:

F(uw)[n] = (@+0)[n] =Y a(k)i(n — k).

kEZ

In Section 6, we will have occasion to mention the action of the Fourier transform on functions
of period L. Define L2 (0, L) to be the set of all measurable functions on R which are periodic of
period L and which are square integrable on 0 < z < L. For u € L2.,(0, L), we define the Fourier
transform Fru € ¢*(Z) by

1
Fruln] = Z/ eI/ L)y (o) g
0
and we have the have the Fourier inversion formula

LL') — Z]:Lu[n] ei(QTrn/L)x'

ne”Z

We define the Sobolev space H! = H(T) to be the space of all functions u € L?(T) such that

the H! norm
1/2
[ull = (Z IHIQIﬁ(n)F)

nez
is finite.
We denote by D the set of all functions v € L?(T) such that (n) = 0 for all but finitely many
n € Z. In particular, functions in D are infinitely smooth.

For functions g(t,z) € L7 ,([0,27] x T), the space-time Fourier transform of g is the sequence
Fi.29 € Z X Z defined by

1 o —imt —inT
Fizglm,n] = (27T>2/0 /Te tem™%g(t,z) dt dz. (2.1)



The correspondence g — F; ,.g defines a one-to-one map from L?([0, 27r] x T) onto the space ¢2(Z x Z)
of square-integrable sequences b[m, n|, and Parseval’s theorem asserts that for g1, g2 € Lfyx([O, 27] x

T), one has
2m
// 0172 dt dv = (27)> YY" Frag1 Feaga:
T Jo

MmEZLNEL
For t € R, define T; : L?(T) — L?(T) as a Fourier multiplier operator by setting, for u € L?(T)
and n € Z,
. 9
F(Tyu)[n] = e "™ Fuln)]. (2.2)
For a given u € L?(T), Tyu(x) is thus defined as a measurable function of z and t. Since [1. [Tyu(z)|* do =
[IF(Tew)ll7: = | Fuln]ll7z = llull72q) for each t € R, we have fOB Jr | Tyu(z)|? dt dz < oo for every

B > 0. Therefore Tyu € L7 ([0, B] x T). In particular, taking B = 2, we have that F; ,(Tyu) is
well-defined in ¢?(Z x Z) and is given by

a(n) ifm=-n
0 if m # —n2.

2

Fio(Tiu)[m,n] = {

Fix B > 0, and for u € L?(T), define

B
Wpg(u) :/0 /T|Ttu(x)|4 dx dt. (2.3)

We consider the variational problem of maximizing Wg(u) over L?(T), subject to the constraint
lul|2. = A, where A > 0 is fixed. Define

Jgx =sup {Wg(u) : u € L*(T) and ||ul?z = A} (2.4)

We say that a sequence {u;};en in L?(T) is a maximizing sequence for Jp ) if |lu;]|3. = A for all
j € Nand lim;_, o Wg(u;) = Jp,x; and we say that ug € L*(T) is a maximizer for Jp ) if [Jug[|7. = A
and WB(U()) = JB))\.

Observe that since Wp(Au) = A*Wg(u) for all A € R, it follows that

e =NJpa (2.5)
for all A > 0. In other words, if we define Cp = Jp 1, then for all u € L?(T) we have
Wp(u) < Cllulzz, (2.6)

which is equivalent to the Strichartz inequality (1.2) with best constant Cz. That Cp is indeed finite
is shown below in Lemma 3.3. It is clear that the existence of a maximizing function for Cp = Jp 1
is equivalent to the existence of a maximizing function for Jp » for every A > 0.

The following theorem establishes a sharp condition for the precompactness, up to translations in
Fourier space, of maximizing sequences for Jp ;.

Theorem 2.1.
(i) For all B > 0,
B
Jp1 > —.
T
(i) If B> 0 and
B
JB,l > ;, (2.7)

then every mazimizing sequence for Jp 1 has a subsequence which, after translations in Fourier space,
converges in L*(T) to a maximizer for Jg1. That is, if {u;} is a sequence such that ||u;||p2 =1 for



all j € N and lim;_,o. Wg(u;) = Jp1, then there exists a subsequence {u;, } and a sequence of real
numbers {01} such that {e*%u;, (z)} converges strongly in L*(T).

In particular, there does exist a mazimizer for Jp1: that is, there exists ug € L*(T) such that
lwollrz =1 and We(up) = Jp 1.

(i) If B > 0 and
B
Jpi1=—, 2.8
pa= 2 (28)
then there exist maximizing sequences for Jg 1 which do not have any subsequences that can be made
to converge by translating the terms in Fourier space.

As corollaries of this result, we obtain existence and non-existence results for maximizers of Jp 1
for certain values of B. In Section 5 below we show that Jg 1 > B/m is true at least for all B in
some range 0 < B < By, where By ~ 2.6; and therefore Jg ; does have maximizers for B in this
range (see Corollary 5.4). On the other hand, we see that Jg 1 = B/7 for all B of the form B = N,
where N € N, and hence for these values of B, no maximizer for Jp 1 exists (see Corollary 5.3).

Remark. Although the questions of whether maximizers exist for Jp 1, and whether Jp ; is equal
to B/m, are somewhat subtle; it is easy to answer the corresponding questions for minimizers of
Wpg(u) subject to the constraint that |lu|lpz = 1. In fact, for every B > 0 the minimum is equal
to B/2m, and is attained at the constant function v(xz) = 1/(27) on T. To see this, note that by
Holder’s inequality, if ||ul/zz = 1 then

B B
B z/ / |u|® dx dt z/ / |Tyul? do dt </ Wg(u)V2rB,
o Jr o Jr
which implies that Wg(u) > B/(2r) = Wg(v).

By a well-known argument, the assertions of Theorem 2.1 yield results on the existence and
stability of sets of ground-state solutions of the periodic DMNLS equation (1.9), for a range of
values of the period L. We review these arguments below in Section 6, where we show (see Theorem
6.2) that for all L € (0,27/v/By), equation (1.9) has a one-parameter family {Sy  : A > 0} of
non-empty sets S, of ground-state profiles, and each set Sy ) is stable with respect to the flow
defined by (1.9).

On the other hand, the nonexistence of maximizers of Jg; when B is an integer multiple of
7 translates into a nonexistence result for ground-state solutions of (1.9): when L is of the form
L =2./7/N for some N € N, then (1.9) can have no ground-state solutions (see Theorem 6.4).

3 Preliminary results

An important property of Wp is that it is invariant with respect to translations in Fourier space as
well as translations in physical space.

Lemma 3.1. Let B > 0.

(i) Suppose u € L*(T) and xo € T. If we define v € L*(T) by v(x) = u(z — x¢) for x € T, then for
all (t,z) € R x T, we have Tyv(x) = Tyu(z — xo). In particular,

Wg (U) =Wg (u)

(ii) Suppose u € L*(T) and ng € Z. If we define w € L*(T) by setting w(n) = a(n — ng) for all
n € Z, then for all (t,z) € R x T, we have

Tyw(z) = ei"Owe_mgtTtu(x — 2not).

In particular
WB (U)) = WB (u)



(iii) If {u;j};en is a mazimizing sequence for Jp 1 in L*(T), {m;}jen is a sequence of integers, and
{z;};en is a sequence in T, then {emszuj(z—zj)}jeN is also a mazimizing sequence for Jp 1. Also,
if w is a mazimizer for Jpa, then e u(x — xo) is also a mazimizer, for every m € Z and every
zeT.

Proof. The statements in (i) and (ii) follow easily from the definition of T} as a Fourier multi-
plier operator. We note that the invariance of Wg under translations in Fourier space also follows
immediately from the formula given below for Wg in (3.3).

Part (iii) of the Lemma follows immediately from parts (i) and (ii), since the norm in L?(T) is
also invariant under translations in both physical space and Fourier space. O

We now state a version of Lions’ concentration compactness lemma.

Lemma 3.2. Fiz M > 0, and suppose that for each j € N, {a;(n)}nez is an element of ¢*(Z) such
that ||aj||?, = M. Then the sequence {a;}jen in (*(Z) has a subsequence, still denoted by {a;}, for
which exactly one of the following three alternatives holds:

1. (Vanishing) For every r € N,

m-+r
lim sup Z la;(n)|? = 0.
J7eomez 0T

2. (Splitting) There is an « € (0, M) with the following property: for every 6 > 0, there exist
numbers r1,r9 € N with ro —r1 > 67, sequences {b;}jen and {c;}jen in (*(Z), and an integer
sequence {m;}jen such that for all j € N,

bj(n) =0 for all n € Z such that |n — mj| > rq,

cj(n) =0 for all n € Z such that |n —m;| < ra,
llaj — (b; + ¢;)l[72 < 4,
165117 — o] <6,

and
el — (M — )] < 6.

3. (Tightness) There exist integers {m;};ecn such that for every e > 0, there exists r € N so that

mj+r

> laj(n)P de> M —e

n=m;—r

for all j € N.

We omit the proof of Lemma (3.2), which is standard: for example, except for obvious modifi-
cations it is the same as the proof given for Lemma 3.1 of [32]. However, for future reference we
emphasize here that the three alternatives given in Lemma 3.1 are mutually exclusive. In particular,
if there exist integers {m;} such that the translated sequence {@;} = {a;(- —m;)} converges strongly
in ¢2(Z), then all subsequences of {a;} are tight, and no subsequence of {a;} vanishes. For indeed,
if {a;} converges in £? norm to a limit a € ¢?(N), then we must have ||a||% = M > 0, and therefore
for every € > 0 there exists r € N such that Y. _ |a(n)|*> > M —e. From the strong convergence
of {@;} to a in £2, it then follows that

m;+r

S lam)P > M-

n=m;—r



for all sufficiently large j. This implies that all subsequences of {a;} are tight, and that no subse-
quence can vanish.

The following lemma gives a Fourier decomposition of Wg(u) which will be important in analyzing
the behavior of maximizing sequences. All sums which appear are intended to be performed over all
integral values of the index of summation, unless otherwise specified.

Lemma 3.3. Suppose B > 0.

(i) There exists C > 0 such that for all u € L*(T),
Gp(u) < Cllullz2m), (3.1)

where

(ii) For all u € L*(T), we have

=2r Z Z Z n)a(n — Da(n — p)i(n —p—1) /OB e 2Pt gt (3.3)
where the sum on the right-hand side converges absolutely.
Moreover, there exists C > 0 such that for all u € L*(T),
W (u) < Cllul| 72 - (3.4)
(iii) For all u € L*(T), we have
Wi (u) = 4rB|la|j. — 27 B|il[f + Dp(u), (3.5)

where

= 277222 n)a(n — Da(n — p)ia(n —p — l)/o e~ 2t gt (3.6)

I£0 n p#0

(The sum on the right-hand side converges absolutely.)

Proof. Suppose u € L*(T). We can decompose the triple sum which defines Gp(u) into two parts
(I) and (II), where (I) represents the sum taken over all (I,n,p) € Z* for which |p| < |I|, and (1)
represents the sum taken over all (I, n,p) for which |p| > ||.

Define K : Z — R by K(n) = 1/(1 + |n|?B), and note that K € ¢*(Z). If |p| < |I|, then we have
1/(1 4 |lp|B) < K(p). Therefore we can use Holder’s inequality and Young’s convolution inequality
to make the estimate

1) <)Y Kp)la(n)a(n - p)l Z la(n = Da(n —p = 1)
< [all ) la(n) ZK ) [i(n — p)|
= Jlall% D la(n)] (K « |a])(n)

< [[alZe @l || K * a2
< [lalg 1Kl < Cllulze ).

On the other hand, when |p| > [I|, we have 1/(1 + |ip|B) < K(I), so we can write

(D) <Y > K@) la(m)i(n — 1) Y la(n — p)i(n —p = 1),
n l p

10



and then use the same argument as for (I), only with [ and p interchanged, to show that (IT) <
C||uH%2(T). This then proves part (i) of the Lemma.

To prove part (ii), suppose first that u € D, the space of all functions v € L?*(T) such that 4
is compactly supported in Z, so that in particular T;yu is bounded on T for all ¢ € R, and all the
computations which follow are readily justified. Writing Tyu =3, ., ﬂ(n)ei(”m_"zt), we obtain

Wg(u) = ||TtUHL4 ([0,B]xT) — ”Ttu'mHQL?,T([O,leT)
2

n)ii(m)ei((n=m)—(n* —m?)t)

L? .([0,B]xT)
2

~ 1lze—1l(2n—l)t ,

L2 ([0,B]xT)

where in the last step we used [ = n —m as an index of summation. Now letting
b(l,t) = Z a(n)a(n — l)e—z'l(2n—l)t7

we can write

b(l,t)e"™|  dx dt.

Using Parseval’s theorem, we obtain that

Wl —2”/ Z\bltIth
_2”222 ﬁ n—1) (r—l)ﬁ(r) /B p—il2n=2r)t g4

0

(3.8)

Changing the index of summation in the innermost sum to p = n—r yields the sum on the right-hand
side of (3.3). Thus we have proved that (3.3) holds, at least in the case when u € D.
In light of the fact that
B
/ —210t dt
0

for all # € R and all B > 0, it follows from what we have proved that there exists C' > 0 such that

2B

110 (39)

WB(U) < OGB(U)

and therefore
Wi (u) = ||Tt“||i;{m([o,3]x1r) < C”“Himr) (3.10)

for all u € D.
Given any u € L?(T), define a sequence {uy} € D by setting uy(n) = @(n) for |n| < N and
un(n) =0 for |n| > N. Then

B
B(un —ZWZZZUN n)uy n—l)uN(n—p)ﬁJ\v(n—p—l)/ e 2Pt gy (3.11)

0

holds for each N € N.

By Parseval’s theorem, Tyuy converges to Tyu in L7 ([0, 27 x T) as N — oo. It follows from (3.10)
that Tyuy also converges to Tyu in L7 ([0, B] x T) for every B € [0,2x], and then by periodicity for
every B € R. Also, by what we have proved, {Tuy}nen is a Cauchy sequence in L} ([0, B] x T),

11



and so converges in the norm of L{ ([0, B] x T) to some limit, which must therefore equal Tyu. It
follows that
WB(U) = lim WB(UN).
N—00

On the other hand, it follows from part (i) of the Lemma, (3.9), (3.11), and the Dominated Conver-
gence Theorem that

B
J\;EHOOWB UN —ZWZZZ an—za(n_p)a(n_p_l)/o =2t gt

with the sum on the right-hand side converging absolutely. Therefore part (ii) of the Lemma has
been proved.

To prove part (iii), we proceed by splitting the sum in (3.3) into four parts, according to whether
p and [ are zero or nonzero.

First, we sum over all values of [, n, and p such that [ # 0 and p = 0. This gives

QWBZZ|U a(n —1)] —QWBZZM Ya(m

I#0 n n m#n

=218 (Z > lamyam))* = ﬂ(n)l“)
= 2mB (||l — [la]) -

Second, we sum over all values of [, n, and p such that [ = 0 and p # 0, obtaining the same result
as above: that is,
21 B (|lallz — llallza) -

Third, we sum over all values of [, n, and r such that [ = 0 and p = 0, resulting in

2rB Y " |i(n)|* = 20 B]Jil|7:.
n

Finally, if we sum over all values of [, n, and p such that [ # 0 and p # 0, we obtain the sum in
(3.6) which defines Dp(u). (Note that the absolute convergence of this sum is guaranteed by part
(ii) of the Lemma.) Taking the sum of all four parts, we obtain the result (3.5), completing the
proof of the Lemma. O

For what follows, we note that if {u;} is a sequence in L?*(T) such that Husz2 = 1 for all j € N,
then by Parseval’s theorem, we have that {@;} is a sequence in ¢2(Z) with ||4;||% = 5=, and therefore
we can apply Lemma 3.2 to {;} with M = -

Lemma 3.4. Let {u;}jen C L*(T) be a sequence such that ||u;||3. =1 for all j € N. Suppose that
the sequence {i;} in (*(Z) vanishes in the sense of Lemma 3.2. Then ||[u;||3, — 0 as j — oc.

Proof. If {w;} vanishes, then for each r € N and for each € > 0, there exists N = N(r,€) € N such
that

m—+r
sup E |a;(n
ULISYZ—

for j > N. In particular, for j > N we have that |i;(n)* < % for all n € Z. This implies that

@) |less — 0 as j — co. Since ||1?]||;}4 < ||1Tj||%2||@||%m, it follows that ||ﬂj||§4 — 0 as j — oo.

Definition 3.5. For uy,us,us,us € L?(T), define

B
F(uy, ug, ug, ug) :/ /Ttul Tius Tius Tiug dx dt.
o Jr

12



Lemma 3.6. There exists C > 0 such that for all functions uy, us, uz, and uy in L*(T),
|F(u1, uz, uz, ug)| < Clluallrzlluzllez lusl 2 [luall 2 -

Proof. By Holder’s inequality and Lemma 3.3, we have

B
/ /{Ttul Tyug Tyus Tyus| do dt < |Tyu|lps 1 Tyugllzs I Tyus|lzs I Tuallzs
0 T ' ’ ’ ’
< Cllurllzz [|ual 2 [|us| L2 lual 22 -

O

Lemma 3.7. There exists C > 0 such that for all u,v,w,h € L*(T) with u = v + w + h and
I1hllze <1, we have

ITullds — I1Teollsy — [Teoly | <€ (Ut llullds + o3 + wli2s) lhllza+

+ 4F (v,v,w,w) + F(w,v,w,v) + F(v,w,v, w)+ (3.12)
+ 2[F(v,v,v,w) + F(v,v,w,v) + F(v,w,w,w) + F(w,v,w,w)].

Proof. For u,v,w,h € L*(T), we have

B
|Toullis — I1Twoll1e — | Tiwlia = |Tyv + Tyw + Tyh|* — |Tw|* — |Tyw|* da dt.
t,x t,x t,x T

By writing the integrand on the right hand side of the above equation as
[Ty + Tyw + Tyh) 2 [Tyw + Tyw + T;h)? — |Tyol* — |Tw!*

and expanding, we obtain
B
/ / |TtU+Tt’LU+Tth|4 - |Ttv|4 — |Ttw|4 dZE dt:A+B+R,
o Jr

where A is a finite sum of terms of the form fOB fqr Tif1 T, fo Tifs T;h dx dt and B is a finite sum

of terms of the form fOB Jr T fr Tof2 Ty fs Tyh do dt, with f1, fa, fs € {u,v,w,h}, and R consists of
the seven terms involving F on the right side of (3.12). We apply the triangle inequality, Lemma
3.6, and Young’s inequality to the terms in A and B to get the desired result. O

Lemma 3.8. The map Wpg : L*(T) — R is continuous.
Proof. Take w =0 in Lemma 3.7. O

Lemma 3.9. There exists C > 0 such that for all v,w € L*(T), all 6 > 0, and all integers ng, 1,
and ra, if ro —r1 > 671, 9(n) =0 for |n —ng| > r1, and w(n) =0 for |n —ng| < r2, then

|F(v,0,w,w)| < (27B +C62)[[0l|7 ]|z,

|F(w,v,w,v)| < Cllo|% (] 62,

P (v,w,v,w)| < C|lo]|Z b7 02,

|F(v,0,0,w)| < Cl[o]% [l 6%, (3.13)
|F(v,0,w,0)] < Cllé]|% [[i] 2 67,

|F (v, w,w,w)| < Cll8]lez (]| 62,

|F(w,w,w,0)| < Cllo]e @] 6%,
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Proof. For any uy,us,us,us € L?(T), we have by Fubini’s theorem and Parseval’s theorem that

B
F(uy,usz,us, uq) = 277/ Z]—'(Ttuthuthug,)[n} ug(n) dt

B —_ — PR
= 27r/ Zeinzt (Ttul * Tyug * Ttug) [n] wg(n) dt

- 2”/ SO e T (- — n2) Trua(n) Ty (o) a(n) dt

n o ni ng

= 2”222 u1(n3) Wa(n1) ws(n2) Us(ny + no —|—n3)/ e 2itmtna)(mitn) gy

ni no ns

(3.14)
where all of the sums are taken over 7Z, and in the last expression we used a new index of summation
ng =n —ny — ny. Taking u; = us = v and uz = ug = w in (3.14), we get

|F (vvww|<27rzzz

ni1 n2 N3

B
3)0(n1)W(n2)w(ny + ng + TLg)/ e~ 2ittmtna)(mtna) gyl
0

(3.15)
We write the right-hand side of (3.15) as the sum of four parts, (I)+ (IT) + (II1) + (IV), where
(I) is the sum over all terms for which |n; + ng| = 0; (II) is the sum over the terms for which
[n1 4+ n2| =0 < |ng + ngl; (I11) is the sum over the terms for which |nq + na| > |n1 +ng| > 1; and
(IV) is the sum over the terms for which |n; + ng| > |n; + na| > 1.
Then we have

1) = 2783 3 [0(ns)5(ns)(n2) @ (n2)| = 27 B33 |1 (3.16)

ne n3

For (II), we have

(II)SZWBZZ‘ﬁ(ng)%(—ng) B(n2)B(n3) ‘_%BZZ\U 13)0(n2)@(n2)@(ns)| = 0, (3.17)

n2 N3 n2 N3

because the assumptions on the supports of v and w in Lemma 3.9 imply that ¥(ng)w(ng) = 0 for
all ng € Z.

Before obtaining estimates for (I1I) and (IV) we note that, in light of the assumptions on the
supports of ¥ and @, for B(ns) D(n1) @W(na) @(ny+na+ns3) to be nonzero we must have |ng—ng| < r1,
In1 + nol <71, [n2 —no| > 1o, and |ng 4+ ng + ng — ng| > 1.

To estimate (I11), we first observe that if |nq + ng| > |n1 + ng| > 1, then in all nonzero terms of
the sum,

1+ |ng + na| |ng + ng| > |n1 + na| [ng + nsl
> (Jny +na + g — no| — Ing — nol)? ny + gl ¥
> (rq — Tl)% |n1 +n3|%
> 6712 |n, —|—n3|%.

Define Ki(n) = Xjn|>1 In|=%, so that ||K1|ln < oo, and define Ka(n) = Ki(n) [(|@(=.)| * [@])(n)].

14



Using (3.9), we can write

rmn<cy 3% { adlain i i 1 } (615 5(m1)@(n2) @ (1 + 2 + )|

1+ |ny + nallny —|—n3|

ny na ns

< oo DD Ximtngl21 Inn+ ng| =2 (”3)%@1)’ > ‘@(nz)ﬁ(nl +ng + ng)‘

= C52 ZZKl ny + n3) ‘ v(ns)v (nl)‘ ( ()| * |ED (n1 + ng)
=(CH2 ;%Kg ny +n3 ‘ v(ns ’ }'U s | (318)
*C52Z| K2*|v | (n1)

< Cot ||vugz |[ 762 (=
< 82 |[5]|% || Kzl

< COF [0 21K [l 147
< 083 |03 %,

ez

where Young’s inequality was used in the last few estimates.
To estimate (IV), we observe that if |ny + ns| > |ny + na| > 1, then in all nonzero terms of the

sum,

1+ |ng 4 na| |ny +ns| > |ng + nol?
1 3
=|(n1 4+ n2 + ng —ng) — (ng — no)|? |n1 + nol|?
> (25_1)%|’I’L1 +7’L2|%

This time we let K3 = K;(n)(|o(=.)|*|@])(n) with K, as previously defined, and we follow a similar
argument as the one used to estimate (I1I) to obtain

X|ni+ns|>|n1+nz|>1
IV) <27C
( )— ™ ZZZ[1+|7’L1—|—H2||H1 +n3:|

nyp N2 N3

5(n3)0(n1)@(n2)®(ny + na + n3)

(3.19)
PN ~
< 062 |0 l|w] 7.

Taking the sum of the estimates in (3.16), (3.17), (3.18) and (3.19) now gives the desired estimate
for F(v,v,w,w).

To illustrate the proofs of the remaining estimates in (3.13), consider for example the estimate
for F'(v,v,w,v). Taking u; = us = u4 = v and uz = w in (3.14), we get

|F (vvwv\<2wzzz

ni1 m2 N3

=)+ UI)+ (III)+ (IV),

where (I) to (IV') are defined in the same way as in the paragraph following (3.15). The sums (II])
and (IV) in (3.20) can be estimated in the same way as the analogous sums in (3.15), and the same
argument used to prove (3.17) shows that (IT) = 0 here as well. In contrast to (3.16), however, here
we find that (I) = 0. Indeed, we can write

~

B
3)0(n1)W(n2)o(ny + na + n3) / e~ 2it(nitns)(nitn2) gy
0

(3.20)

i)\ (Tlg )5(712) .

no ns

Because of our assumptions on the supports of ¥ and @, we have (ng)w(n2) = 0 for all ny € Z; and
therefore (I) = 0. It follows that the desired estimate holds for F (v, v, w,v).

The proofs of the remaining estimates in (3.13) proceed in the same way as the proof of the
estimate for F(v,v, w,v). O
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Lemma 3.10. Let {u;}jen C L*(T) be a sequence such that ||u;||3. =1 for all j € N. Suppose that
the sequence {w;} in (*(Z) vanishes in the sense of Lemma 3.2. Then Dg(uj) — 0 as j — oc.

Proof. Let f > 1. From the proof of Lemma 3.3, we see that there exists C' depending only on B
such that

|Dp (1 |<szzl+\lp|| j(n)aj(n —Daj(n — p)ij(n —p—1)|

1£0 n p£0

We can decompose the triple sum on the right-hand side into three parts, writing it as (I) + (II) +
(III), where (I) is the sum over all (I,n,p) such that 1 < |I] < g and 1 < |p| < 8, (II) is the sum
over all (I,n,p) such that |p| > |I| > 1 and |p| > B, and (IIT) is the sum over all (I,n,p) such that
[I| > 8 and |I] > |p| > 1.

To estimate (I), we write

B B
0N <Y lagn)] Y lag(n =] Y |@j(n—p)aj(n—p—1)]
n I=—p p=—5
3 3 1/2
~ ~ ~ 2 ~
<D @) D lagn =D D laj(n—p)| 51| ¢2
n l==p p=—p
— 1/2 3
<@l sup | D (@) | Do l@n)] Y 1@ (n 1)
meL r=m—p_ n l=—
m+6 1/2
<@l sup | D Ja(r))? 1@5le2lx 18,81 * ][] e2
meEZ r=m—3
_ 1/2
<2Bll@l% sup | D> Ja(r))?
me r=m—_3

To estimate (IT) we observe that for all (I,n,p) which appear in that sum,
L+ Jipl > (1% ]pl 2 > B2 1%,

We write

-TYY MWD 6 1)y 01— 1) (0~ )y 0~ D)

_1 3, ~ ~ ~
<p Z|Uj ()Y Xzt O 2 [@5(n = D] |@5(n — p)is(n —p — 1)
n l

p

< B2 11 D 1 )Y X (O @5 (n = D).
n l

Therefore, if we define K;(l) = x|”21(l)|l|’% and apply Young’s convolution inequality, we obtain
that

1.~ ~ L, ~.3 —~ —_1 ., ~ 4
(I1) < B2l l12 1K1 * |51l < B72 G511 (1K1 ller 16511 < CB72 (14352 -

In estimating (/1) we can use that

1 3 1 3
L+ |lp| > |I]2|p|]z > B2 |p|=.
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We write

(1) = 30 52 3 MRS 0 0~ D~ )~ )

<83 B D Xz Ol (=) 3K = DT —p D)

l

—1~
<B 2||uj||?2z:|% |ZX{|p|>1} )p| ™[ (n — p)|
=p" 2||UJ||Z2Z|UJ K1*|uj|)(n)

S Cﬁ_i ||u.7||[2 ’

where again we applied Young’s convolution inequality in the last step.
Combining the above estimates for (I), (IT), and (III), we obtain that

1/2
m+f
1D ()| < CB™ ||yl + CBlla I3 sup | > |y (r)?
me r=m-—_3

Now, if {&;} vanishes, then for each fixed 8 > 1 and € > 0 there exists N € N such that for all
Jj=N,

m+
sup Z |a;(r)
MmeEZ r=m—3

In particular, for 8 = €2, there exists IV such that for all j > N,

i o~
|Dp ()| < CeV2 || . + Ce (%) ? @y ]| < Ce.

This shows that lim; .., Dp(4;) = 0. O

4 Proof of Theorem 2.1

We first prove part (ii) of the Theorem, which is the main part.

Fix B > 0, and suppose Jg1 > B/m. Let {u;};en be a maximizing sequence in L*(T) for Jg 1,
so that |luj||,2 =1 for all j € N and lim;j_,o. Wp(u;) = Jp,1. We have that ||@;[|7. = 1/(27) for all
j € N, so Lemma 3.2 applies with M = 1/(27), and asserts that there are three types of behavior
that the sequence {4} could exhibit. We claim that in the present situation, vanishing and splitting
do not occur, so that only tightness is possible.

We suppose first, for the sake of contradiction, that the sequence {;} is vanishing. Then from
(3.5) we have that

W (uy) = 4xBlld [ — 2B |14 + Di(u;) (4.1)

for all j € N. On the other hand, from Lemmas 3.4 and 3.10 we have that ||Gj|« — 0 and
Dp(uj) = 0 as j — oo. Therefore, taking j — oo in (4.1), we get that Jp; = B/, contradicting
the assumption that Jg 1 > B/m. Thus {@;} cannot vanish.

Next suppose, again for contradiction, that {a;} exhibits splitting. Let a;(n) = 4;(n) for n € N,
fix § > 0, and for this § define o € (0,1/(27)) and for each j € N define sequences {b;(n)}nen
and {c;(n)}nen as in alternative 2 of Lemma 3.2. For each j € N, let v;,w; € L?(T) be such that
0j(n) = bj(n) and w;j(n) = ¢;(n) for all n € N. From Lemmas 3.7 and 3.9 we have that, for all
JeN,

(W (u;) = W (v;) = W (wy)| < 8Blo;|% [liy]| + €82,
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where C' is independent of § and j. Therefore

W (uy) < W(v;) + W (w;) + 87 B||7 || [|iw;]|% + C2
~ o~ 1
< v;ll2Tp1 + lwjl|ieT51 + 87B| 5|2 @ |2 + Co*

~ —~ ~ o~ 1
= 47|\ G5]|72 T2 + 47 W) |72 TB.1) + 87 B0 1|72 [|w; |72 + Co7.

Recalling that ||0;[|% <+ 6 and ||w;||Z < (M —a)+6 = (1/(27) — @) + &, we obtain that

21 T

1 2 1 ,
W (u;) < 4 <a2 + ( — a> ) Jp,1 +81Ba (2 —~ a> 1062 +CO+ 0% (4.2)

Taking the limit as j — oo followed by the limit as § — 0 in (4.2) results in

1 ? 1
Jp1 < 472 <a2 + <27T — a> ) Jp1 + 8mBa (271‘ — a) . (4.3)

But since 0 < a < i, the inequality (4.3) implies that Jp1 < B/m, again contradicting the
assumption that Jg 1 > B/m. Therefore {4;} can not split, either.

By Lemma 3.2, the only remaining possibility for {a;} is that one of its subsequences, when
suitably translated, is tight. In other words, denoting this subsequence again by {u;}, we can assert
the existence of integers my, mg, ms, ... such that for each € > 0, there exists an integer r = r(e) > 0
with the property that

mj+r 1
PR CIOREE S (4.4)
n=m;—r

for all j € N.

Define v;(z) = e~ ™i%u;(z) for j € N, so that 9;(n) = @;(n + m;) for all n € Z. By Lemma 3.1
{v;} is also a maximizing sequence for Jp 1. Also, from (4.4) we have that for each € > 0, there
exists an integer r > 0 with the property that for all j € N,

- 1
0i(n)|? > — —e.
S G > 5
n=—r

Since the sequence {v;};en is bounded in L?(T), with |lv;]|z2 = 1 for all j, there exists a subse-
quence, still denoted by {v;}, that converges weakly to some function uy € L?(T) with |Jugl|zz < 1.
We claim that in fact ||ug||rz = 1. To prove this, we start by fixing an arbitrary k& € N. Let
er = + and choose rj, = r(e;) = r(+). We define p1, : Z — {0, 1} by setting px(n) = 1 for [n| < ry
(h)

and p,(n) = 0 for |n| > ri; and then define the low- and high-frequency components vj(lll and v, ¢
of v; by setting
! .
F (v ) = ()55 (n)
and .
F (o) 1] = (1= () ()
for all n € Z.
We then have
l ~ - 1
o5z = Do+ ) () (W] < (U4 45517 = 5 (1+4rF) (4.5)
and
h ~ 1 ~
logpllze =2m > [P =2m | - = 37 [5;(n)]* | < 2me. (4.6)
In|>r Inl<rn
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Siince (4.5) bounds {vj(l])ﬁ} in H' norm and (4.6) bounds {v](};c)} in L? norm, we can assume (by
passing to subsequences if necessary) that {vy,)f }jen converges weakly in H L(T) to some limit ug) €
HY(T), and {v](-flk)}jeN converges weakly in L? to some limit u,(ch) € L?*(T) with Huz(@h)HLQ < V27ey.

We must then have ug = u,(cl) + u,(gh).

By Rellich’s Lemma, the inclusion of H!(T) into L?(T) is compact. Therefore, again by passing

O]

to a subsequence, we can assume that {Ujfk}jEN converges strongly in L?(T) to u,(f). Hence

O]
k

h
luollz2(ry = el + ul™ || L2my

Y]

l h
il 2y = Nl 22y
Jim (o3l ze(r) - Ve

v

- (h)
2 liminf | ;L2 — llvj llz2m | — v2mex
> hm ||’UjHL2(11') — 2v 27T€k

j—oo
=1-—2v27e;.

We have thus proved that ||ugl|zz > 1 — 24/27e;, for every k € N, and so we have shown that
luol| 2 = 1 = lim;_, o [|vj|| 2. This is enough to conclude that {v;} converges to uo not only weakly,
but also in the norm of L?(T). Since, as noted in Lemma 3.8, the map Wp is continuous on L?(T),
it follows that ug is a maximizer for Jp 1. This completes the proof of part (ii) of Theorem 2.1.

To prove part (i) of the Theorem, let {u;};cn be any sequence such that [|u; | z2(ry = V27| |2 =
1 for all j € N and {@;} vanishes, in the sense of Lemma 3.2. For example, we could define u; by

requiring that
1

—— for |j|<n
@j(n) = ) 2w (2j+1)

for |7] > n.

Since {w;} vanishes, it follows from Lemmas 3.4 and 3.10 and equation (3.5) that

hm WB(’LLj) = B/ﬂ', (47)
J—00
and therefore we must have Jg 1 > B/m.

For part (iii) of the Theorem, assume that Jp1 = B/m, and take {u;} to be any sequence such
that ||uj|l2(ry = 1 for all j € N and {4} vanishes. As in the preceding paragraph, we have that
(4.7) holds, which means that {u;} is a maximizing sequence. However, since {;} vanishes, then
by the remark made above in the paragraph following Lemma 3.2, it is impossible for there to exist
a subsequence {u;, } and a sequence of integers {my,} such that {u;, (- —my)} converges strongly in
¢*(Z). This then proves part (iii).

5 Existence of maximizers

In this section we give results on the set of values of B > 0 for which maximizers for Jp ; exist in
L3(T).
For what follows, it will be useful to define the map Ap : L?(T) — R by

. DB(’LL)

Ap(u) = 2222 — Jallh,

where Dp is defined in (3.6). We have the following corollary of Theorem 2.1.

Corollary 5.1. Let B > 0 be given.

(i) Suppose there exists some w € L*(T) such that Ag(w) > 0. Then Jg1 > B/, and there exists
a mazimizer for Jg 1 in L*(T).
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(ii) If, on the other hand, one has that Ap(u) < 0 for all w € L*(T), then Jg1 = B/w, and there
do not exist any mazimizers for Jp 1 in L*(T).

Proof. By Theorem 2.1, to prove part (i) it is enough to show that Jp; > B/m holds if and only
if there exists w € L*(T) such that Ag(w) > 0. Indeed, because D(Aw) = Aw for all A > 0 and
all w € L*(T), we have that Ag(w) > 0 for some w € L?(T) if and only if Ag(w) > 0 for some
w € L*(T) with |w||pz = 1. By (3.5), this is equivalent to saying that Wg(w) > B/m for some w
with ||w||g2 = 1. This in turn is clearly equivalent to the assertion that Jg 1 > B/m.

To prove part (ii), note that if Ag(u) < 0 for all u € L%*(T), then from (3.5) it follows that
Wg(u) < B/m for all u € L*(T) such that |lu|z= = 1. In particular, Jg; < B/m. On the other
hand, from part (i) of Theorem 2.1 we have that Jg 1 > B/m. Therefore, we must have Jg 1 = B/,
and moreover there cannot exist any ug € L?(T) such that ||uo||z2 = 1 and Wg(ug) = Jp 1. O

For u € L*(T) and p,! € Z, define
apalw) = 3 an)i(n — i(n — p)ifn —p - 1) (5.1)
neN

and

b 1= l /B €72ilpt dt (52)
p; B 0 ’

so that from (3.6) we have

u) =218 Y api(u)by. (5.3)

1£0 p#£0
Lemma 5.2. For all B >0 and u € L*(T),

= 4R (Z ap,p(U)byp + 2 Z Z ap,1(w)bpy ) — ag,0(u), (5.4)

p=11=1

where RNz denotes the real part of the complex number z.
In particular, if the Fourier coefficients 4(n) are real-valued for all n € Z, we have

o) 1
sm 2p B) = sm (2plB)
= 4 E p p + 8 E a W — CLO’O(U). (55)
p=21=1

Proof. 1t is easy to see from (5.1) and (5.2) that for all u € L*(T) and all p and [ in Z, we have

api(u) = ap(u) = ap,—1(u) = a—p,(u)

and
bpi=bip=b_p_1=b_p,.

In view of these identities, the statements in the Lemma follow from (5.3) and the fact that

ago(u) = [l

An immediate consequence is the following nonexistence result.

Corollary 5.3. If B= N7 for N € N, then Jg1 = N, and there do not exist any mazimizers for
Jp,1 in L*(T).

Proof. From (5.2) we see that if B > 0 is an integer multiple of 7, then b; , = 0 for all integers { and
p such that Ip # 0. Therefore, by (5.4),

Ap(u) = —ago(u) = —|dl[p <0

for all u € L?(T). The result then follows from part (ii) of Corollary 5.1. O
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To obtain existence results, we consider different test functions for w. First, define w; € L?(T)
by setting

1 forn=0
wi(n) = r forn =41
0 for |n| > 2,

where r € R. Clearly, when w = w; we have that a;; = r? and a,,; = 0 for (p,) # (1,1). Therefore,

from (5.5) we get that
5 sin2B

Ap(wy) = 4r 5B — (14 2r).
. . 1+ 2rt .. V2 _1 . .
Since the function f(r) = 5z has a minimum value of 5= at r = 2714, then there will exist a
r
choice of r € R for which Ag(w;) > 0, provided that
in 28 2
sin2B_ v2 (5.6)
2B 2

Thus we see that there exists wy; € L?*(R) for which Ag(w;) > 0, provided B € (0, By), where
By =~ 0.6958 is the positive solution of (sin2By)/2By = v/2/2.
Next, define wo € L?(T) by setting

1 forn=0
- r forn==+1
w3(n) = s forn =42

0 for |n| > 3,

where 7, s € R. Here we see that the only nonzero values of @, ;(w2) which appear on the right-hand
side of (5.5) when u = ws are

apo(wz) = 1+ 2r* + 25

a1 (ws) = r2(1 4 25)

a1 (wg) = 2r%s (5.7)
as1(we) = r2s?

ag2(wy) = s2.

Therefore (5.5) gives

in2B in4B 5in 6.8 in8B
Ap(ws) = 4r%(1+2s) (Sl;B >+16r2s (SIZB >+87‘282 <511$B> +452 (SIEB )—(1—|—2r4+2s4).

Computations with Mathematica indicate that max{Ag(ws2) : (r,s) € R?} is positive for all B such
that 0 < B < By where B; = 0.919 + .001.
In fact, if we define ws € L?(T) by setting

1 forn=0
wz(n) = p+ig forn==+1
0 formn>2,

then computations with Mathematica show that max{Apg(ws) : (p,q) € R?} is positive for all B in
the interval 0 < B < Bs, where B3 = 1.39 & .01. For B near Bz, the maximum occurs near p = 0.6
and ¢ = 0.5.

We can go a bit further by defining w, € L?(T) by

1 forn=0
_ p+iqg forn==+1
wa(n) = p+iq forn =42
0 for |n| > 3.
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Then computations with Mathematica show that max{Ag(ws) : (p,q) € R?} is positive for all B in
the interval 0 < B < By, where B, = 2.60 £ .01. For B near Bj, the maximum is attained near
p=0.7 and ¢ = 0.6.

From these computations and Corollary 5.1 we then obtain the following existence result:

Corollary 5.4. There exist mazimizers for Jp1 in L*(T) for all B in the interval 0 < B < By,
where By = 2.60 & —.01.

6 Stability of sets of ground-state solutions of the periodic
DMNLS equation

As mentioned in the introduction, the periodic DMNLS equation for functions of period L in z takes
the form
u = —iVHL(u) (6.1)

where

) L 1
Ho(u) = —%/0 /0 (Thu(z)|* dt da.

The operator T is defined as a Fourier multiplier operator on L}%er(O, L) by setting

Fu(TFu)n] = e/ L F ]
for all n € Z, where Fy, denotes the Fourier transform on L2_,(0, L) (see Section 2 for notation). In

per
particular, from (2.2) we see that T, = T/™.
Equation (6.1) is globally well-posed in L2_.(0, L), in the sense that for every ug(z) € L2.(0,L)

there is a unique strong solution u(z,t) of (6.1) in L2_.(0, L) with u(z,0) = u(x). Moreover, Hp,(u)

per
and P(u) = § fOL |u|? dx are conserved quantities for such solutions. (See [3] for details.)
A solution of (6.1) of the form _
u(x,t) = e'p(x), (6.2)
where ¢ € Lf)er(O,L), is called a bound-state solution with profile function ¢. Substituting into

(6.1), we see that ¢ € L2,(0, L) is the profile function of a bound-state solution if and only if ¢ is
satisfies the equation

VHL(¢) = wé (6.3)

for some w € R.

Note that (6.3) is the Euler-Lagrange equation for the variational problem of minimizing Hp, (u)
subject to the constraint that P(u) be held constant, with w playing the role of the Lagrange
multiplier. Thus profile functions for bound-state solutions may be characterized as critical points
of the variational problem. If a non-zero bound-state profile ¢ is actually a minimizer for the
variational problem, then we say that the bound-state solution is a ground-state solution. That is,
a bound-state solution (6.2) is a ground-state solution if H(¢) < H(¢) for all ¢ € L2,.(0, L) such
that P(¢) = P(¢) > 0.

For given A > 0 and L > 0, we define Sy to be the set of all minimizers for Hy (u) subject to
the constraint P(u) = A. (Note that it may happen that no such minimizers exist, in which case
Sp.x is empty.) Thus, every element of Sy, 5 is a ground-state solution profile; and conversely every
ground-state profile belongs to Sy, 5 for some A > 0. Because Hy(u) and P(u) are invariant under
translations and under the action of multiplication by e for § € R, then Sy, ) is also invariant under
these operations. That is, if ¢ € St x, then e ¢(x 4 1) is also in Sp. for every 0 € R and every
xp € R. Another way of putting this fact is that Sp,  is invariant under translations both in = and
in Fourier space.

We say that a sequence {u,} in L2 (0, L) is a minimizing sequence for Sg x if P(u,) = A for all
n €N, and Hy(u,) — I x as n — oo, where

Ipn=inf{Hp(u):ue L2, (0,L) and P(u)=A\}.

per
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We observe next that profiles in Sy, 5 are related via dilations to the maximizers for (1.2) discussed
in the preceding sections. For & > 0, define a dilation operator My on functions v with domain R,
by setting

(Msu)(z) = u(dx)

for x € R.

Lemma 6.1. Suppose L > 0 and X\ > 0 are given, and let § = L/(27) and B = (2r/L)?. Then
Y e L2,.(0,L) is in Spx if and only if Ms(¢) € L*(T) is a mazximizer for Jp /s

per

Proof. We have that u € L2.(0, L) with P(u) = X if and only if v = Msu € L*(T) with [[v]|7. = A/d.
A calculation shows that

Ti(v)(z) = M5 (Tys,(u)) ,
whence one obtains that 1
HL(’LL) = —EWB(’U).

Taking the infimum over all u € L2,.(0, L) with P(u) = A, or equivalently over all v € L?(T) with

per

[[v]|22 = A/8, we obtain the desired result. O

Theorem 6.2. Suppose L > 27/\/B4, where By is as defined in Corollary 5.4. Then for every
A > 0, Spa is nonempty, and is furthermore stable, in the following sense. For u € Lf)er(O,L),
define
d(u, S = inf — .
(u,SL,2) ¢€12L,A [u— oLz (0,L)

per

Then for every e > 0, there exists § > 0 such that if ug € L2,,.(0, L) with d(ug, Sp.\) < 0, the solution

u(z,t) of (6.1) with initial data u(-,0) = uy will satisfy d(u(-,t), Sp.x) < € for allt > 0.

Proof. Notice that if L > 27/y/By, then B = (27/L)? satisfies 0 < B < By. Also, as noted above
after equation (2.6), the existence of a maximizing function for Jp 1 is equivalent to the existence
of a maximizing function for Jp \ for every A > 0. Therefore it follows immediately from Lemma
6.1 and Corollary 5.4 that Sy, ) is nonempty. Furthermore, from Theorem 2.1 and Lemma 6.1 it
also follows that for every minimizing sequence for Sp, », one can find a subsequence which, after
translations in Fourier space, converges in Lger(O, L) to a function in Sy, x.

The stability of the set Sy, » follows from a standard argument, which we summarize here (more de-
tails, for example, can be found in [3]). Suppose, to the contrary, that the set Sy, 5 is not stable. Then
one must be able to find some € > 0, some sequence of initial data {uo,} in L2.,(0, L) with corre-
sponding solutions {u,(z,t)}, and some sequence of times {t,} in (0, c0) such that d(uo,, Sp.x) — 0
as n — oo and d(un(-,t,),SL.A) > € for all n € N. The assumption on the initial data {ugy,}
implies that by choosing a sequence {«,} in (0,00) with lim, . a, = 1 such that P(a,up,) = A
for all sufficiently large n, we can obtain a minimizing sequence {c,uon } for S . Moreover, since
Hp, and P are conserved functionals for (6.1), {anun (-, t,)} is also a minimizing sequence for Sy, .
Therefore there exists a subsequence of {c,uy, (-, t,)} which, after translations in Fourier space, con-
verges in Lger(O, L) to a function in Sz, 5. Since Sp, » is invariant under the action of translation in
Fourier space, it follows that d(c,un, (-, tn), Sp,x), and hence also d(uy,(+,t,), SL,2), converges to zero
as n — co. But this contradicts the assertion that d(u,(-,tn), Sp.x) > € for all n € N.

O

We remark that similar results on the stability of sets of ground-state solutions of the nonlinear
Schrodinger equation duy + Uy + |u[Pu,; = 0 date back to the work of Cazenave and Lions in [11]. In
fact, for the nonlinear Schrédinger equation, Cazenave and Lions prove a stronger form of stability
called orbital stability: namely, they show for a given ground-state profile, the two-dimensional set
{e?p(x + x0) : 0 € R, 29 € R} is stable in the above sense. (Note that the term “orbital stability”
is slightly inaccurate here, in that the orbit in the usual sense of the ground-state solution would be
the one-dimensional set {e?¢(x) : @ € R}. It is easy to see, however, that this one-dimensional set
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is not stable in the above sense, cf. Remark 8.3.3 on p. 274 of [10].) In order to prove this stronger
form of stability, one generally needs more information on the structure of the set of minimizers
of the variational problem. In the case of the nonlinear Schrodinger equation, it follows from the
elementary theory of ordinary differential equations that the ground-state profile for a given L2 norm
is unique up to translations and multiplications by phase shifts e*?, which allows one to deduce orbital
stability. However, no such uniqueness result is available yet for the DMNLS equation.

In light of the fact that ground-state solutions for the nonlinear Schrodinger equation have, up to
symmetries, profiles that are real-valued even functions of x, it is interesting to note that at least for
some values of B, ground-state solutions of the periodic DMNLS equation cannot have real-valued
even profiles:

Corollary 6.3. In the case L = +/8m, the set St x of ground-state profiles is nonempty for every
A > 0. However, none of the the functions in St x are real-valued and even.

Proof. The assertion that S g , is nonempty follows from Corollary 5.4 and Lemma 6.1.

Suppose now that 3 € S\/sTr,)\- Then from Lemma 6.1 we have that v = Mgy € L%*(T) is a
maximizer for Jp »/5, where B = 7/2 and § = \/2/7. From (5.5) we see that in the case B = /2, for
every function u € L?(T) such that 4(n) is real-valued for all n € N, we have Ap(u) = —ag o(u) < 0.
On the other hand, from Corollary 5.1 and its proof one sees that for a maximizer v for Jp /s,
one necessarily has Ag(v) > 0. Therefore the Fourier coefficients of v cannot be real-valued. Since
real-valued even functions must have real-valued Fourier coefficients, it follows that v cannot be
real-valued and even. Therefore ¢ cannot be real-valued and even either. O

We conclude with an easy nonexistence result, which shows in particular that Theorem 6.2 cannot
be extended to all positive values of L.

Theorem 6.4. If L = 2,/n/N for some N € N, then Sp x is empty for every A > 0. Hence, for
these values of L, the periodic DMNLS equation (6.1) has no ground-state solutions.

Proof. Suppose L = 2,/m/N for some N € N, and A > 0. From Lemma 6.1, we see that a function
¢ € L2,.(0,L) can be in Sy, only if Ms(y) € L3(T) is a maximizer for Jo. » /5, where 6 = 1/v/N.

per
But from Corollary 5.3 we know that Jyr 1, and hence also Jyr /5, can have no maximizers.
Therefore S,y must be empty. O]
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